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Abstract. The initial response of a density-stratified fluid in a rectangular domain to a surface stress is modelled
numerically. The model is laminar, two-dimensional and non-hydrostatic. Upwelling of deep fluid at the upwind
end of the fluid is critical to the subsequent evolution of the stratification. It is confirmed that upwelling is a
wave process and consideration of flow at the upwind end-wall illustrates the flow structure of partial upwelling.
Numerically, to ensure adequate penetration of surface stress, an increased viscosity is needed. Comparisons are
made between the present numerical results and previously published experimental observations.
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1. Introduction

The interaction of one fluid flowing past a cavity filled with a second fluid has a range of ap-
plications in natural and built environments [1]. An example from geophysical fluid mechanics
is the response of a density-stratified lake or reservoir to the initiation of a surface wind stress.
Mortimer’s classic laboratory experiments [2] represented a lake using a stratified wind-driven
cavity. That work showed how large-amplitude internal deflections could control vertical mass
transfer in a stratified cavity. Of particular interest is the upwelling of deeper water to the
surface via basin scale internal waves generated by the wind stress [3]. The surface stress is
then parametrized relative to the stability and horizontal scale of the fluid [3]. Subsequently
this parameterization has been presented as the Wedderburn number [4]

W = g′h2
1

u2∗L
, (1)

where h1 and L are the average depth of the surface layer and the length of the basin re-
spectively, g′ = g�ρ/ρ0 is the reduced gravity, where g is the acceleration due to gravity, ρ0

is a reference density and �ρ is the density change across the interface. A value of W < 1
indicates upwelling whereby the lower layer reaches the surface at the upwind end of the fluid.
Related experimental work more clearly defined the behaviour and parameterization [5] and
the transient response of the upwelling [6].

The present paper presents a numerical approach to identifying a number of facets of
upwelling. It uses the laboratory experiments of [6] as inspiration and validation and then
examines the upwind end wall flow behaviour specifically in the context of the upwelling pro-
cess. Those experiments used a three-layered fluid and generated the stress with a moving belt
floating on the surface. The subsequent fluid response was a combination of internal waves,
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circulation and turbulence, where the end-walls caused horizontal pressure gradients which
resulted in longitudinal gradients in density structure. The magnitude of this density gradient,
which is effectively a density interface slope, is related to the balance between the force due
to the wind and the opposing force generated by the baroclinic gradient. The interface slopes
are described in terms of the lake number LN [6] which balances moments generated by these
forces and is conceptually an integral Wedderburn number [5]. This parameter was introduced
to handle variable bathymetry and stratification and is defined by [7]

LN = Mbc

τAzv

, (2)

where Mbc is the baroclinic moment about the centre of volume of the water column if the
density structure were tilted at a constant slope at the point of upwelling, A is the surface area
of the cavity, τ is the surface shear stress and zv is the distance from the water surface to the
centre of volume.

The timescale for this inherently transient process is the period of the first horizontal mode
internal seiche given by

T1 = 2L

cp

, (3)

where cp ∼ √
g′H is the phase speed of the wave and H is the average depth, L is the

length of the basin and g′ = g�ρ/ρ0 is the reduced gravity. A combination of isotherm
tilt at equilibrium, as described by LN , and duration of the forcing relative to T1 defines the
expected dynamics [8]. Monismith [5] identified that upwelling could occur even when the
parameterization suggested it would not. This was termed partial upwelling and was localised
near the upwind endwall and is not easily quantified with laboratory experiments designed to
elucidate the flow development in the basin as a whole.

The modelling approach described here uses a laminar, uniform viscosity model to capture
the essential basin-scale dynamics that lead to upwelling. The validity of this approximate
approach and the conclusions drawn are considered in the discussion. The new work presented
here seeks to (i) validate a model for small cavities that captures the basin scale dynamics
critical to upwelling, (ii) identify the nature and timescale of partial upwelling and (iii) pay
particular attention to kinematics at the endwall. The present work is not aimed at modelling
the response after upwelling has occurred. In the following sections we describe the numerical
method, the results of the simulations and then discuss their relevance to the overall problem.

2. Numerical modelling

2.1. MODEL FORMULATION

The response of a stratified fluid to a surface stress have previously been studied using a cloud-
in-cell approach [9], a buoyancy-extended k-ε closure approach [10] and a two-dimensional
eddy-viscosity model [11]. Some of these studies [10, 11] model the experiments of [5]. The
buoyancy-extended k-ε closure approach [10] led to an apparent over-estimation of the en-
trainment at the downwind end. Other work [12] uses an approach similar to the present work
when modelling the experimental results of [13]. However, the belt velocities were smaller
than those used here and they used a cavity that had an aspect ratio closer to unity.
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Figure 1. Schematic of a rectangular stress-driven domain containing a three layer fluid.

In the experiments of [6] and [5], the surface stress induced a narrow jet of fluid at the
surface that would turn downward at the downwind end wall and erode the underlying strat-
ification. In terms of modelling a lake, this jet is an artefact of introducing the stress at the
laboratory scale. In the laboratory experiments a panel of porous matting was introduced to
absorb the momentum of the jet. A similar jet-like structure occurs in the numerical results
with a similar effect on the stratification. In fact, when the jet strikes the downwind wall, the
numerical model is not able to adequately resolve the subsequent flow. To overcome this a
linear drag term λu (where u = (u, v) is the fluid velocity) is introduced into the momentum
equations with λ �= 0 only in some region close to the downwind endwall (a sponge layer).
The magnitude of λ is increased linearly from zero at the beginning of the end flow region to
λmax at the end wall x = L. That is

λ(x) =
{

0, 0 < x < xλ

λmax(x − xλ)/(L − xλ), xλ < x < L.
(4)

The choice of the damping parameter λmax will be discussed later. Suffice for now that for all
simulations xλ = 0·936L. This makes the sponge layer in the numerics marginally thicker
than the diffuser used in the experiments. However, it was found that a thicker, more gradual
damping was most effective in the numerical model for absorbing momentum without adding
significantly to computational expense. In any case, the numerical results show that the flow
at the upwind end (where upwelling occurs) is insensitive to moderate changes in xλ.

The response of a stratified water body to a surface wind stress is modelled by the flow of
a fluid in a two dimensional rectangular domain (Figure 1). The equations of motion used in
this work are

Du

Dt
+ λu = − 1

ρ0

∂p

∂x
+ ν∇2u, (5)

Dv

Dt
+ λv = − 1

ρ0

∂p

∂y
+ ν∇2v − g′, (6)

Dρ

Dt
= κ∇2ρ, (7)

∂u

∂x
+ ∂v

∂y
= 0, (8)

where u and v are the fluid velocities in the x- and y-directions respectively, p is the perturb-
ation pressure, ρ is the density, ρ0 is the reference density, ν is the (constant and uniform)
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kinematic viscosity and κ is the diffusivity of the stratifying species which is taken to be salt
(as it was in the experiments of [6]). In the above equations, the Boussinesq assumption has
been made, D(.)/Dt is the material derivative ( ∂

∂t
+ u · ∇) and ∇2 is the two-dimensional

Laplacian operator. The boundary and initial conditions on the flow are

ρ0ν
∂u

∂y
= τf (x, t) = ρ0u

2
∗f (x, t) on y = H, (9)

v = 0,
∂ρ

∂y
= 0 on y = H, (10)

u = v = ∂ρ

∂y
= 0 on y = 0, (11)

u = v = 0,
∂ρ

∂x
= 0 on x = 0, L, (12)

u = v = 0, ρ = ρinit(y) at t = 0. (13)

where τ is the surface stress, u∗ is the friction velocity and f (x, t) is a surface stress modu-
lation function chosen to mimic experimental parameters. The surface stress rather than the
surface velocity is specified here as it is the stress that is generally used in the scaling for the
problem. Also, it is the surface stress that is measured in [6].

The initial stratification ρinit(y) shown in Figure 1 needs to be specified. Following [6]
a three layer stratification is used to provide the density interface (the ‘thermocline’ in a
stratified lake) with its own identifiable region, that is

ρinit(y) =




ρ1 h2 + h3 < y ≤ H

ρ2 h3 < y ≤ h2 + h3

ρ3 0 ≤ y ≤ h3

, (14)

where h1 + h2 + h3 = H . In practice, the sharp density interfaces inherent in (14) cause
numerical difficulties. Consequently, in the simulations the initial density step between ad-
jacent layers is smoothed over a few grid points. This smoothing is done using the formula
ρnew

ij = (ρold
ij−1 + 2ρold

ij +ρold
ij+1)/4 where ρij is the density at the point (xi, yj ). This smoothing

is performed twice so that the change in density between adjacent layers occurs over five
gridpoints (about 10 mm) which is significantly less than the layer thicknesses (30 mm to
75 mm). This has an effect similar to molecular diffusion in the laboratory experiments over
the period between filling and the commencement of surface stress.

The surface stress that drives the flow in the cavity varies both with time and space, as
implied by the notation used in (9). Following [6], the stress is linearly ramped from t = 0 up
to its maximum value after which it is held constant for the duration of the simulation. The
stress is also a piece-wise linear function of x so that the stress vanishes at either end of the
cavity. This is to avoid vigorous corner flow and to reflect the fact that the stress is applied to
a limited area in the experiments of [6]. Thus, the stress modulation function f (x, t) has the
general form f = F(x)G(t) where

F(x) =




x/x1 0 ≤ x ≤ x1

1 x1 < x ≤ x2

(x − L)/(x2 − L), x2 < x ≤ L

(15)
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Figure 2. Plots of numerical results showing density interface positions and selected horizontal velocity profiles
(not to scale) at t/T1 = 0·52 for three different values of viscosity applied to experiment E2. These values are (a)
7, (b) 35 and (c) 175 times the molecular value. The dashed lines are the interface positions at t = 0.

and

G(t) =
{

t/t1 0 ≤ t ≤ t1

1 t1 < t
. (16)

In the present work (except where stated otherwise), t1 = T1/2, comparable to [6]. Also, for
all simulations x1 = 0·05L and x2 = 0·915L. Note that the stress is assumed to be constant
for x1 < x < x2. The stress distribution for [6] is not known, only the integrated stress is
measured. In the absence of detailed knowledge of the stress distribution a uniform stress
distribution is appropriate.

The role of viscosity in the present results needs to be addressed. The laboratory flows
of [6] generated turbulence and significant mixing almost as soon as the surface stress was
initiated. The experimental results of [6] suggest that mixing does not have a dominant effect
on the processes leading to upwelling but that the degree of upwelling has a large effect on the
longer-term mixing. Consequently, a laminar, uniform viscosity model is used here to model
the flow until upwelling occurs. There is one aspect, however, where turbulence is important
for the initiation of upwelling. The near-belt turbulence transports the surface stress down into
the body of the upper layer achieving a greater stress penetration than for laminar flow. It
has been demonstrated that stress penetration is determined by both the equilibrium density
interface tilt and the internal wave field [14, 15]. Stress penetration is achieved in the present
work by using a uniform value for ν approximately 35 times higher than the molecular value.
For this value of ν, the viscous boundary layers that form at the top and bottom of the cavity
are thinner than the density layers, at least until upwelling occurs. However, the upper viscous
boundary layer is sufficiently thick to transport the surface stress into the body of the upper
layer which is a more accurate representation of the experiments of [6].

Figure 2 shows numerical density and velocity structure at the upwind end of the tank for
three different values of ν (7, 35 and 175 times the molecular value). This figure corresponds
to experiment E2 of [6] (see later) at a time t/T1 = 0·52 just after upwelling has occurred.
In Figure 2(a), where ν is 7 times the molecular value, the surface stress has not penetrated
sufficiently into the upper layer compared with the experimental results and upwelling has
been delayed compared with the corresponding experimental results. Also, (not shown in
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Table 1. Experimental variables and parameters. The total depth of the fluid H for both experiments
was 160mm, the individual layer depths are h1, h2 and h3 from top to bottom (see Figure 1). The other
parameters are εij = (ρj −ρi)/ρ0, T1 and T2 are the first and second internal mode periods respectively,

u2∗ is the friction velocity and LN is the lake number defined in the text.

Experiment h1 h2 h3 ε12 ε23 T1 T2 u2∗ LN

(mm) (mm) (mm) (×103) (×103) (s) (s) (ms−1)2(×104)

E6 67 42 51 3·14 3·60 86 167 0·84 2·90

E2 54 31 75 1·85 3·61 90 224 4·00 0·35

Figure 2(a)) the flow at the downwind end has become unstable, signifying the onset of
turbulence and thus is not adequately resolved by this model. Essentially, the stress is driving
a recirculating flow in the upper layer. The middle panel of Figure 2 (ν is 35 times the molecu-
lar value) has the best correspondence with the experimental data. This value of ν provides
sufficient penetration of the surface stress into the upper layer without damping out the wave
response. For Figure 2(c) (ν is 175 times the molecular value), the viscous boundary layer has
grown too thick and occupies nearly the whole upper layer. This value of ν leads to a damping
of the wave response of the flow and the velocity profiles are close to those associated with
buoyancy free flow. In practice, there is a wide range of values for ν (approximately 15 to 100
times the molecular value), where experimental and numerical results are in good agreement.
In the following results, ν = 3·5 × 10−5 and κ = 9·2 × 10−8 (which is about 35 times the
molecular value for salt). Note that ν/κ ≈ 381 so there is very little diffusion of the stratifying
species for the duration of the numerical experiments considered here. This is desirable since
the focus here is on the wave response leading to upwelling. Having a large κ would lead to
significant thickening of density interfaces which complicates the dynamics.

2.2. NUMERICAL SOLUTION

The system of equations and the associated boundary conditions are solved numerically using
the numerical scheme developed by Armfield [16]. This is a SIMPLE type scheme [17, pp. 126–
131] applied on a non-staggered mesh; that is, all variables (velocities, pressure and density)
are stored at the same grid point which lies at the centre of its control volume. Addition-
ally, Leonard’s [18] QUICK scheme is used for the advection terms and time integration is
performed using the ADI method [19].

The experiments of [6] used a 1880 mm × 160 mm rectangular tank. A non-uniform
discretization is used to ensure adequate resolution of the boundary layers that form near solid
boundaries. Errors associated with changing the grid scale are kept small by ensuring that the
size of neighbouring grid boxes differ by no more than 5%. In the fine resolution simulations
discussed below, a 186 × 70 grid is used with �x ranging from 1 mm near the wall to 45 mm
in the centre of the flow domain and �y ranging from 1·5 mm to 4·5 mm. There is a diffusion
of momentum stability constraint on the time step �t < �x2/4ν ≈ 7×10−3s. This constraint
is conservatively met by �t = 4 × 10−3s so a total of approximately 5 × 105 time steps are
required for each simulation.
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Figure 3. Plots of density and streamfunction fields
at t/T1 = 0·8 at the downwind end for three simula-
tions of E6 with different values for the end region
damping parameter λmax. They are (a) λmax = 0,
(b) λmax = 2·9s−1 and (c) λmax = 11·5s−1.
The dashed contours are the streamfunction with
the solid contour being the zero contour. The dotted
lines are density interface positions.

Figure 4. A photograph from the laboratory exper-
iments detailed in [6] showing interfacial details
similar to that plotted in Figure 3.

3. Results

Two experimental configurations from [6] are discussed here. The first (labelled E6 in [6])
represents the wave response (LN = 2·9) of the stratified fluid to the wind stress. In this
case, upwelling is not expected to occur. The second configuration (labelled E2 in [6]) has
a LN = 0·35 so upwelling of the middle layer is expected. The experimental parameters
are summarised in Table 1. Note that all simulations are done using a non-dimensionalised
system. However, to maintain the strong link between the present results and those of [6], all
parameters are given in dimensional terms.

Before going on to describe the results in detail, a value for the damping parameter λmax

needs to be chosen. Figure 3 shows the density and streamfunction fields in the downwind
end region of the computational domain for three simulations of E6 with increasing values
for the damping parameter λmax. For λmax = 0, the flow in the end region is very vigorous
with much disruption to the density structure. In particular, there is a folding over of the
lower interface near x/H = 11. Note that many of the features observed for λmax = 0 are
likely to be unphysical as the numerical model does not adequately resolve the flow. However,
the general response is comparable to unpublished experiments preliminary to [6] without
downwind damping. For λmax = 11·5 (Figure 3(c)), the flow is over-damped relative to the
experiments. The damped region is acting like a solid wall with the surface jet being turned
downwards before it has penetrated into the end region. In Figure 3(b) where λmax = 2·9 (the
value used in the simulations in this work), the damping is not so strong as to suppress the
vertical motion associated with the wave response but is strong enough to absorb much of the
momentum of the surface jet. Figure 4 shows a photograph of an experiment similar to E6
from [6] at approximately the same time as the results in Figure 3. The middle layer is marked



8 D. E. Farrow and C. L. Stevens

Figure 5. A series of snapshots of the interface positions from the experimental results of E6 of [6] (a–d) with
corresponding numerical results (e–h). The non-dimensional times are t/T1 = (a, e) 0·19, (b, f) 0·58, (c, g) 0·97
and (d, h) 1·35.

with dye. The agreement between the laboratory and numerical density structure in the end
region suggests that setting λmax = 2·9 is appropriate. In any case, these and other numerical
experiments show that, up until the time that upwelling occurs, the flow structure near x = 0
where upwelling occurs depends only weakly on λmax.

3.1. THE WAVE RESPONSE: E6

In this LN = 2·9 experiment, upwelling is not expected to occur. Figure 5 shows sequences of
snapshots of density contours from both the experimental and numerical results at correspond-
ing times. The density contours are chosen to reflect the positions of the two interfaces and the
neighbouring contours give an indication of their thicknesses. The data from the laboratory
and numerics are contoured differently, otherwise information is lost. The numerical results
are sufficiently well resolved so as to contour directly. The laboratory contoured by using a
spline interpolation for each isopycnal, this avoids the difficulty of two-dimensional interpol-
ation where there is a large variation in horizontal versus vertical resolution. The experiments
are salt stratified. In fact, over the time scales considered here, there is virtually no diffusion
of salt so the thickening of the interfaces is mainly due to a locally diverging velocity field.

Despite the lack of knowledge of the exact laboratory boundary conditions the two sets
of results are in reasonable agreement both in overall appearance and in many of the details.
The numerical results have captured the downwind compression of the middle layer which is
indicative of the second mode response. There appears to be a transient discrepancy between
the results at t/T1 = 0·58 (panels (b) and (f)) with the experimental results showing more short
wavelength wave motion and consequent distortion of density interfaces. The discrepancy is
short-lived as the numerical and experimental results are in much better agreement for later
times. In particular, the interfacial tilts compare well (see later) and the increasing steepness of
the upper interface near the upwind end is present in both sets of results. Also, the finer details
of the density structure (for example the thickening and thinning of the density interfaces
bounding the middle layer) are in good agreement.

Figure 6 shows a comparison of the evolution of the density and horizontal velocity profiles
at x = L/3 as a function of time. The fluid velocities in the experimental results are 15%–20%
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Figure 6. Velocity contours for E6 as a function of depth and time at x/L = 1/3 for (a) the laboratory results
and (b) the numerical equivalent. The density interfaces are superimposed as thick lines and the solid arrow at
t/T1 = 0·5 indicates the ramping time for the surface stress.

larger than those from the numerical results. The reason for this is not clear but it could be due
a mismatch in the distribution of the surface stress, a difference in the thickness of the surface
boundary layer, the enhanced viscosity used in the numerical model or the degree or nature of
damping at the downwind end. One feature of the experimental results that has been captured
in the numerical results quite accurately is the position of the u = 0 contour. The presence of
this contour is an indicator of the wave response. In both figures, this emerges from y = 0 at
t/T1 ≈ 0·7. In the experimental results the contour is at y/H ≈ 0·5 at t/T1 = 1·3 while in
the numerical results it is at y/H ≈ 0·4. There are other features where the two sets of results
differ, particularly the changes of sign of u in the lower layer at t/T1 ≈ 0·6 and t/T1 ≈ 1·4.

Note that the LN = 2·9 parameterization indicates that upwelling is not expected to occur
in this experiment. However, the numerical results (see Figure 5(f)) show interfacial fluid at the
surface at the upwind end. The experimental results may potentially be upwelling, however,
as data could not be recorded very close to the endwall or belt, this could not be confirmed.

3.2. THE UPWELLING RESPONSE: E2

In this LN = 0·35 experiment upwelling is expected to occur. This value for LN is at the lower
end of the relevant range of values and represents a very vigorous response. As well as the en-
hanced baroclinic tilt, the laboratory version of E2 is distinguished from E6 by the presence of
strong turbulent mixing of the density structure. In fact, the vertical mixing occurs on a similar
time-scale to the wave/upwelling response so that the middle layer loses much of its identity
at the upwind end before the wave response can generate upwelling. Subsequent to this, the
lower interface continues to rise at the upwind end and upwells. This has consequences for the
comparison between the experimental and numerical results as there is no parameterization of
mixing other than the increased viscosity and diffusivity in the model. However, the numerical
and experimental results are in reasonable agreement until the time that the middle layer in
the laboratory loses its identity through vertical mixing (at t/T1 ≈ 0·3).

Figure 7 shows a number of snapshots of the density field for E2 from both the experi-
mental and numerical results. As expected, the earlier two times are in reasonable agreement
(up to the time that upwelling occurs) but for later times, there is considerable discrepancy.
The influence of turbulent mixing is evident in the experimental results as the middle layer
is mixing with the upper layer fluid and thickening as a result. For t/T1 > 1·1 in the experi-
mental results, the upper two layers are sufficiently mixed as to be considered homogeneous.
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Figure 7. A series of snapshots of the interface positions from the experimental results of E2 of [6] (a–d) with
corresponding numerical results (e–h). The non-dimensional times are t/T1 = (a, e) 0·16, (b, f) 0·48, (c, g) 0·8
and (d, h) 1·11.

Figure 8. Velocity contours for E2 as a function of depth and time at x/L = 1/3 for (a) the laboratory results
and (b) the numerical equivalent. The density interfaces are superimposed as thick lines and the solid arrow at
t/T1 = 0·5 indicates the ramping time for the surface stress.

After this time, the response is more accurately described as that of a two layer fluid. In the
numerical results, no such mixing occurs and as the middle layer is upwelled, it is carried
downwind by the surface jet before recirculating in the upper layer. This recirculation can be
seen in figures 7(g) and (h) where the recirculating fluid forms a tongue of fluid advected to
the left above the middle layer. In fact, when this tongue of fluid emerges from the right of the
cavity, the upper layer is entirely surrounded by middle layer fluid. Note that the experimental
contours from [6] are of equilibrium density sorted profiles which has the effect of eliminat-
ing density overturns that occurred in their experiments. Since their analysis relies on layer
averaging this sorting has no effect on their interpretation. An instantaneous snapshot might
well be closer to the numerical results.

Figure 8 shows the evolution of the E2 density and horizontal velocity profiles at x =
L/3 with increasing time. This shows the dramatic effect that vertical mixing has on the
flow development in the experimental results. For times up to t/T1 ≈ 0·3 the two sets of
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. Average interface slopes for experimental and numerical
results for E6 at times corresponding to Figure 5. Each slope
is multiplied by 102.

t/T1 0·19 0·58 0·97 1·35

upper exp. −0·379 −2·69 −4·32 −4·41

num. −0·0731 −2·89 −4·77 −4·48

lower exp. −0·262 −1·22 0·599 1·38

num. −0·0313 −1·32 −0·535 0·625

. Average interface slopes for experimental and numerical
results for E2 at times corresponding to figure 5. Each slope
is multiplied by 102. The entry (∗) corresponds to a time
when there is no clearly identifiable upper interface.

t/T1 0·16 0·48 0·80 1·1
upper exp. −0·143 −5·91 −8·71 (∗)

num. −0·154 −11·4 −2·10 −1·43

lower exp. −0·0948 −3·64 −8·38 −7·95

num. −0·125 −5·30 −4·26 −4·99

results are in good agreement both in the overall structure and the details of the velocity
field. As discussed earlier, mixing now takes over as the dominant process in the upper two
layers in the experimental results, leading to significant differences between the numerical
and experimental results. In the experimental results, mixing is so dominant that the interface
between the upper and middle layers is eroded before upwelling can occur. This does not
occur in the numerical results where the wave response continues to develop up to and beyond
middle layer upwelling, which occurs at t/T1 ≈ 0·34. The difference in the wave response
between the two sets of results is apparent in the position of the u = 0 contour in Figure 8.
In the experimental results, the contour emerges from the bottom y = 0 at t/T1 ≈ 1·0 (not
visible in Figure 8) whereas it appears earlier at t/T1 ≈ 0·6 in the numerical results. Note
also that the recirculation velocities in the upper layer of the numerical results are two to
four times larger than those in the experimental results after t/T1 ≈ 0·3. This is presumably
because much of the energy input from the belt is being dissipated in the turbulence rather
than feeding into the kinetic energy of the recirculating flow. This dissipation also leads to the
later wave response in the experimental results mentioned earlier.

4. Discussion

4.1. EFFECTIVENESS OF NUMERICAL MODEL

Prior to upwelling, the present numerical results are generally in reasonable agreement with
the experimental results. It is only after upwelling that the lack of turbulent mixing in the
numerical simulations leads to significant differences in the density structures. This is particu-
larly the case for the experimental results for E2 where vertical mixing significantly erodes the
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stratification before full upwelling can occur. Tables 2 and 3 provide a quantitative comparison
between the experimental and numerical results. Here, the average slopes of the two layer
interfaces are calculated for the times shown in Figures 5 and 7. For the numerical results
only data for 0·25 < x/L < 0·75 is included to remove localised endwall effects. For E6
(Table 2), the numerical results predict the experimental upper interface slope very well. The
largest discrepancy occurs early at t/T1 = 0·19. This could be a reflection of the relatively
fast turbulent transport of stress in the experiments compared with the laminar numerical
results. The agreement for the lower interface is not as good. Specifically, the change in sign
of the slope of the lower interface is delayed in the numerical results when compared with the
experimental results. For E2 (Table 3), the agreement between the experimental and numerical
results is not as close due mainly the mixing mentioned above. By t/T1 = 1·1 the upper
interface has disappeared. The slope of the bottom interface from the numerical results is
about half that of the experimental results for most of the simulation.

Another effect of the highly turbulent upper layer in the experiments is the generation of
significant short wavelength waviness in the lower layers via pressure perturbations associ-
ated with the larger scale eddies in the upper layer. These eddies are absent in the numerical
results as is the consequent waviness in the lower layers (for example, compare Figures 5(b)
and (f)). This extra waviness in the experimental results does not have a significant effect
on the upwelling process which is dominated by basin scale motions. Closer examination
of the experimental results indicate that the waviness is due to the recirculation of turbulent
fluid in the upper layer associated with the moving belt. The recirculating turbulent fluid is
absent in the numerical results as it has been slowed by the sponge layer. This recirculation of
turbulent fluid is also responsible for the extra waviness in the experimental results evident in
Figure 6(a) and also in Figure 5(b). The absence of the extra waviness in the numerical results
is considered to be secondary as far as modelling the upwelling process is concerned as it may
perturb the upwelling but not significantly retard it.

A further distinction between the two sets of results is that the surface velocity in the
numerical results is not constant with x. Besides the adjustment at each end to satisfy the
boundary conditions, u at y = H is increasing with x. This is a reflection of the fact that the
viscous boundary layer thickens as it is carried along by the belt. To maintain the uniform
stress boundary condition, the surface velocity increases to maintain the requisite velocity
gradient at the surface. It is possible to get around this by changing the upper boundary condi-
tion to a fixed slip velocity condition. However, the surface stress cannot then be specified as
an input to the model. It is the surface stress measurements from [6] that form a fundamental
part of the model specification.

The general conclusion is that, other than the mixing, the dynamic structure of the two
models are in good agreement and are representative of the experimental results up until the
time upwelling occurs.

4.2. THE INITIATION OF THE STRESS

The stress initiation differs between the experimental and numerical results. In the experi-
mental results, the belt induces a turbulent boundary layer that transports stress into the upper
layer. In the numerical results where turbulence is not directly modelled, the flow develops
a moving viscous boundary layer at the surface associated with the belt. In either case, the
boundary layers entrain fluid from the upwind end of the interior of the domain, which feels
the boundary layer as a distributed sink at the upwind end and a distributed source at the
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Figure 9. A series of snapshots of the velocity field at the upwind end as upwelling occurs for the numerical
simulation of E2. The times are t/T1 = (a) 0·3, (b) 0·34 and (c) 0·39.

downwind end. The interior flow is potential until there is a significant deflection of the density
interfaces to lead to the baroclinic generation of vorticity. Thus at small times, the flow in the
interior of the domain is a plug flow towards the upwind end. This interior velocity structure
is apparent in both the experimental and numerical results (see Figures 6 and 8) and persists
up to t/T1 ≈ 0·5 for E6 and t/T1 ≈ 0·3 for E2. The interior recirculation velocity for E2 is
of the order of 1 to 2 cm s−1 which leads to a recirculation time of the order of approximately
T1, that is, longer than the upwelling time of 0·34T1. After these times, the flow in the lower
layer starts to decelerate as the wave response of the interior flow begins due to the relaxation
of the initial tilt.

4.3. THE UPWELLING PROCESS

Figure 9 shows three density and velocity structure plots at the upwind end at different times
from the numerical results of E2 during upwelling (which occurred at t/T1 ≈ 0·34). Note
that the velocity vectors shown in that figure are interpolated from the calculations for clarity.
Also, the vectors at the surface y = H have been omitted since they are much larger and
would dominate the figure. The velocity structure does not change significantly over the three
plots. The wave response has commenced with the flow near the bottom at the upwind end
about to reverse (see Figure 8(b)). Also, the vertical velocities are largest in the region between
x = 0 and x ≈ 0·1L. This region of large vertical velocities extends from near the surface
to y/H ≈ 0·7 and in this region there is enhanced upwelling in the sense that the slope of
the interfacial deflections is larger than those at greater x. Monismith [5] differentiates, for a
two layer fluid, between total and partial upwelling. Total upwelling is the classical picture of
upwelling when LN < 1 (Wedderburn number in [5]) and the interface is bodily tilted. Partial
upwelling occurs when LN > 1 and the upper-most interfacial fluid is brought to the surface
via circulation rather than seiche processes. This effect is encountered because of the diffuse
interfaces that evolve through diffusion in the laboratory [5].

This effect is enhanced in the present work since a substantial middle layer is explicitly
included in the model. Natural situations will typically be more complex as it is common
for multiple remnant thermoclines to exist. Consequently pressure-driven flows at the upwind
endwall will often have only very small buoyancy forces to counteract in order to bring denser
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Figure 10. Upwelling time versus LN based on coarse resolution simulations. The solid line represents the ana-
lytic expected time given by (17). The ×’s are numerical observations based on E2 for different surface stresses.
The circles are the absolute difference between these two times. The + at LN = 0·35 is the upwelling time for E2
using the fine resolution results.

fluid to the surface. This is also evident in Figures 5 and 7. Thus upwelling, in the broadest
sense, occurs earlier than would be predicted by consideration of the slope in the interior
of the domain. For example, the numerical results for E6 show that partial upwelling does
occur though it is not expected to on the basis of the large value for LN . The larger vertical
velocities near the upwind wall occur because the flow there is not geometrically constrained
by the local depth. If the bathymetry were shoaling there, the vertical velocities in the interior
of the domain would be smaller and upwelling would presumably be weaker. This point is
considered again later. In Figure 9(a) (t/T1 = 0·3), the middle layer fluid is just about to
upwell. Note that the upper interface is in a region where the vertical velocity is increasing
with y which gives rise to the thickening of the interface there. In Figure 9(b), fluid from
the middle layer is being entrained into the surface jet and it is at this time that upwelling is
occurring. Note that the structure of the density contours suggest that the middle of the jet (that
is away from the surface) is moving faster than the surface fluid. This is not the case, rather
the upwelling velocities slow dramatically near the surface to satisfy the boundary condition
there which leads to a delay in the middle layer fluid reaching the surface. Once it has reached
the surface, the faster velocities there eventually lead to the upwelled middle layer fluid at
the surface catching up with the earlier entrained fluid leading to the ‘folding over’ of the
isopycnals, which can be seen in Figure 9(c).

4.4. UPWELLING TIMESCALE

An analytic timescale was proposed for upwelling Tu given by [6]

Tu = T1

2π
cos−1(1 − LN). (17)

Figure 10 shows a comparison between the above timescale and a number of coarse resolution
simulations for different LN . These simulations were run on a 138×46 grid with a time step of
1·6 × 10−2s. This resolution is sufficient for determining upwelling times. Figure 10 includes
one upwelling time based on a fine resolution run for E2 which agrees with the coarse resol-
ution results. For Figure 10, the surface stress is applied instantaneously rather than ramped
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as for the results discussed previously. This is because the derivation of the timescale given
by (17) assumes an instantaneously applied stress. For the purposes of Figure 10, upwelling
is defined to have occurred when fluid of density equal to the average of the upper two layers
has arrived at the point (x, y) = (0·05L, 0·98H), that is near the surface and one twentieth of
the distance from the upwind end. It turns out in practice that the upwelling time determined
from the numerical results is fairly insensitive to how it is defined so long as the point chosen
to measure the density is inside the surface jet and outside the viscous boundary layer that
forms at the vertical wall at x = 0.

Given that the estimate (17) is based on a linear approximation with simple first mode
dynamics, the agreement between that estimate and the numerical results is good for 0·25 <

LN < 1·75. Note that the numerical results capture the cusp-like curvature for small LN . For
LN near 2, there is a difference between the behaviour of the two results as the estimate above
predicts no upwelling for LN > 2 while in the numerical results upwelling still occurs. In
fact, upwelling occurs up to at least LN = 2·5. For this larger value of LN , the upwelling
is due to the general circulation and wall effects combined with the presence of a discrete
middle layer. The partial upwelling is not due to the second mode response mentioned earlier
since this takes longer to develop [6]. For smaller LN , the upwelling is largely a first mode
process so the numerical results and the estimate above track reasonably well. The circles in
Figure 10 denote the absolute difference between the two sets of results. They are included
here because the difference between the predicted upwelling time and the observed upwelling
time is remarkably constant for 0·1 < LN < 1·5. It is not clear why this should be the case.
Slight changes to the definition above for when upwelling occurs in the numerical results does
not alter this property.

5. Conclusions

This paper considered a two-dimensional laminar constant viscosity model of the surface
stress driven upwelling process in a density stratified cavity. The modelling here is restricted
to the pre-upwelling regime. Once upwelling has occurred and vigorous mixing begins, the
laminar model considered here does not resolve all the important features of the flow. A
sponge layer at the downwind end of the fluid adequately managed the surface-driven jet
that confounded earlier studies.

Both small and large lake numbers (LN ) have been considered and, despite the numerical
simplifications, it was demonstrated that the model did match laboratory experiments within
the limitations described above. The model was then used to explore the timing for the onset
of upwelling. The first order model for this time proved adequate.

As to the details of the upwelling process, the numerical results show that although up-
welling, for small LN , is a basin-scale wave process, partial upwelling can occur at higher
LN . Partial upwelling at large LN is driven by general circulation and wall effects. Thus,
future study needs to consider the bathymetry at the upwind end of natural systems and its
effect on the structure of the flow.
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